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ANALYSIS OF THE LONG-TERM CREEP-FATIGUE BEHAVIOR OF
2 1/4 Cr-]1 Mo STEEL*

M. K. Booker

ABSTRACT

~ Ferritic 2 1/4 Cr-l1 Mo steel is one of four materials
currently approved for use in elevated-temperature service in
nuclear power generation systems by ASME Code Case N-47. The
Code Case includes elastic analysis creep—fatigue design curves
for the other three materials, but not for 2 1/4 Cr-l Mo steel,
This report details our development of such curves for this
material at the request of the ASME Working Group on Creep-
Fatigue.

We examined available creep-fatigue data by linear sum-
mation of creep and fatigue damage, strain range partitioning,
and damage rate analysis to guide us in the development of
elastic analysis curves. The data are most consistent with the
strain range partitioning predictions, but linear summation is
the only approach currently recognized by Code Case N-47 for
treatment of creep-fatigue analyses. For this reason we pri-
marily developed elastic analysis curves with the linear sum-
mation of damage approach. Our other results are presented for
comparison only.

The linear summation elastic analysis curves are
constructed for maximum temperatures of 427, 482, and 538°C
(800, 900, and 1000°F) for times of 100, 1000, 10,000, 80,000,
and 250,000 h. In addition we constructed 100 h curves for a
maximum temperature of 593°C (1100°F). Curves are constructed
by using both the damage summation diagram from analysis of
experimental data and an assumed damage sum of unity. The
damage diagram results are recommended for use. We include
final recommended design curves (including Poisson's ratio
correction for ASME Code strain calculation formulae) for poten-—
tial creep at both ends of the fatigue cycle (no mean stress)
and for creep on the compressive end of the cycle (tensile mean
stress) only.

INTRODUCTION

The prediction of long—term material behavior under combined creep
and fatigue loading is an important but difficult aspect of elevated-

temperature design. Many methods for prediction have been proposed and

*Work performed under DOE/RRT 18%9a OHO028, Steam Generator Materials
Development. '




used with varying degrees of success. A recent reportl summarizes many
current views on the treatment of creep-fatigue data.

In some cases detailed inelastic analysis of all components in a
given design may not be necessary. For these instances ASME Code Case
N-47% includes elastic analysis creep—fatigue curves. However, the Code
Case does not include such curves for 2 1/4 Cr-l1 Mo steel. We report our
efforts to develop those curves. In accordance with current design prac-—
tice,2 we predicted creep—fatigue behavior by linear summation of damage.
Similar curves were developed two years ago and have been described in a
previous report.3 Those curves, for design lives of 2.5 x 105 h, were
reviewed by the ASME Working Group on Creep-Fatigue; the Working Group
recommended minor changes. However, they recently requested that elastic
analysis for shorter design lives be developed as well., In the meantime
we have developed improved expressions for continuous cycling fatigue aand
creep-rupture behavior. Thus, to develop a consistent set of elastic anal-
ysis curves and to assure that the best available information is used in
constructing the cufves, we have developed a complete new set of elastic
analysis curves (including 2.5 x 10% h eurves). Though these new curves
utilize the revised fatigue and creep-rupture expressions; they are deve-
loped similarly to the previous-curves.3 For comparison the avallable

4

data have also been examined by strain range partitioning™ and damage

rates”® to describe creep—fatigue behavior.

LINEAR DAMAGE SUMMATION

Linear damage summation is based on the two distinct and separate
types of damage that can develop at high temperatures. Creep damage 1is
measured by the well-known time~fraction® approach, while fatigue damage
is accounted for by cycle fractions.’ Thus, at failure the damage reaches

some critical wvalue, D, given by

D=0D,+ Dp , (1)




where the creep damage, D,, is given by

3t |
Do = ¥ %p7 (2)

and the failure damage, Dp, is given by

- XN
7 3 (3)

br Neg

where ¢ and n represent the time and the number of cycles, respectively,
spent in a given loading condition, and %, and Ny represent the
corresponding creep rupture life and the continuocus—cycling fatigue life,
respectively, under each coundition.

The application of this method to available creep—fatigue data for
2 1/4 Cr-1 Mo steel is based on the approach outlined by Campbell.8 This
methoed involves numerical integration of a relaxation curve during a hold

period to calculate the creep damage per cycle as
t .
P(L) = | " ast, )
0

where ¢ 1s the total hold time. Evaluation of Dc(l) for a typical cycle

then approximately gives phe total creep damage at failure by
D, = WpDa(l) (5)

where Ny, is the total number of cycles to failure in the given hold—time
test., For available experimental creep—fatigue data, the strain range and
temperature were always held constant so that the fatigue damage for a

given test is given by

Dp = Nh/Nf . ‘ (6)



Linear damage summationm has been widely used, although it probably
oversimplifies real behavior. Some of its obvious advantages are that it
is:

1. based on widely available monotonic creep-~rupture and continuous
cycling fatigue data,

2. backed by considerable experience and recommended by Code Case N-47,

3. simple to apply and fits in with current stress analysis techniques
and constitutive equations, and

4, relatively amenable to application of safety factors.

On the other hand, certain disadvantages are also evident:

i, monotonic tensile creep-rupture properties are used with cyclic
loading, compression creep, etc.;

2. effects such as environmental interaction, metallurgical change such
as thermal aging, and creep—fatigue interactions are not treated
directly;

3. stresses are usually not known very accurately, and rupture life is
very sensitive to stress;

4. D is very difficult to estimate if it is not unity, and it is
somewhat difficult to determine if it is unity;

5. damage accumulation may not be linear with time but may vary with

strain rate, etc.

STRAIN RANGE PARTITIONING

Our analysis of the creep—fatigue behavior of 2 1/4 Cr~1 Mo steel by
strain range partitioning (SRP) has been described previously.9‘10
Although not officially sanctioned by ASME Code Case N-47, this method has
received considerable attention as a possible alternative approach, as
witnessed by a recent.symposiumll devoted to discussion of experiences
with the method.

The SRP procedure has been refined and modified during the last few
years. The method used here is fairly basic. Briefly, the method assumes

that the inelastic strain range traversed by a cycling specimen can be

partitioned into four possible components:




Aepp = tensile plastic strain reversed by compressive
plastic strain,
Agcc = tensile creep strain reversed by compressive creep

strain,
Ae

[}

ep tensile creep strain reversed by compressive plastic
strain, and
Aepc‘= tensile plastic strailn reversed by compressive creep
strain.
Here "plastic” strain is defined as time—independent inelastic strain,
while "ecreep” strain is defined as time-dependent inelastic strain.
Under a given set of loading conditions, the predicted cyclic life is

found from the so—called "Interaction Damage Rule"12 by

E Fpe Fop Fee
1w Tpe Fep Tee -
Nored  ¥pp  WNpe  Nep  Yee

where
Npred = the predicted cyclic life,
Fpp = Aepp/ﬂsin,
Fpe = Aspc/Aein,
Fop = begp/besy,
Foo = Degp/begy,.

The value Aej, is the total inelastic strain range, while the inelastic
strain components are defined above.

The quantities Npp’ N?c’ Nap’ and N,, are the partitioned lines and

refer to the expected cyclic life as if all the inelastic strain had been
that component (Aeé » Aepc’ Aecp, Ascc). These lines are defined for
2 1/4 Cr-1 Mo Steel by the following "life relationships™:

Nep = 255he gt T, (8)
Ny, = 450hezs 28 (9)



Vpe = 386Acze 07 (10)
Npp = 5218675 57(hegy < 0.45%) , (11)
Npp = 1648AeThe24(Aegy > 0.457) , (12)

where Aej,, values are measured in percent. Note that in formulating the
best fit life relationship lines expressed by Eqs. (8) through (12), we
used all cyclic creep and relaxation data, even though the particular
damage strain fractionl3 for a given test, that is @ = (Féc)(NobS/Ncc)

> 0.5 for a "ee" cycle, was not obeyed. In the strain controlled relaxa-
tion tesﬁs, particularly those conducted at low total strain ranges, Aepp
was always the most dominant inelastic strain range. However, we thought
it appropriate to include the strain controlled data in these formulations
since our purpose was to generate guideline relatiomships for the design
conditions referred to in the Introduction.

Note that Egs. (11) and (12) merely describe the relationship between
evelic life and plastic strain range from continuous cycling tests. These
expressions differ somewhat from those developed recently14 to describe
this relationship; that report also includes a detailed analysis of tem-
perature, heét"to—heat, and heat—treatment effects. Equations (ll) and
(12) represent a less detailed analysis but yield good compromise esti-
mates of behavior. Secondary effects such as those listed above are com—
monly ignored in the SRP analysis.15 Figures ! and 2 show the life
relationships and the data used to obtain them, while Fig. 3 compares the
four life relaticnship linmes on a common axis.

'Figure 4 summarizes results obtained by "back-predicting” the cyclic
lines of the available experimental tests. In general, the results are
quite satisfactory. However, there are indications in both Fig. 2(c)
and 4(c¢) that "ee" strain when obtained via relaxation is particularly
damaging. In view of this observation we constructed separate life rela-
tionship lines for creep "ce" strain and relaxation "e¢"” strain [denoted

"eo{p)"] (Fig. 5). Figure 6 shows the results of back—predicting the
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cyclic lives of the "ee" tests with the dual life relationship lines of
Fig. 5. Finally, Fig. 7 compares the dual "ee” lines with the other life

relationship lines.

ORNL-DWG 77-11568R
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Partitioning Life Relationship Lines for 2 1/4 Cr-1 Mo Steel.

The implications of the above analysis in predicting long-term beha-
vior must be assessed by comparison to actual data. For this reason we
did not use several relatively long-~term tests in construction of these
life relationship lines. Comparison of predictions with these long-term
data thus yields a true measure of the predictive capabilities of the

method. This comparison will be discussed below.

DAMAGE - RATE, APPROACH

Another method for amalytical description of creep—fatigue behavior
that has received increasing attention is the "damage rate” approach of

Ma jumdar et al.? 1In that method both the amount of cyclic plastic strain
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and the plastic strain rate at which the deformation occurs are important
variables. Strains that accumulate more slowly are considered more
damaging. The damage rate approach can be viewed as spreading the strain
range partitioning discrete life relationships across a continuum of
strain rates rather than merely separating them into slow (creep) and fast
(plastic) rates.

We have not yet examined the damage rate approach for our data.
However, Majumdar et al.”? examined a small set of data for 2 1/4 Cr-1 Mo
steel and report preliminary results. To obtain a quick comparison of
this method with the linear summation of damage and strain rate par-
titioning approaches, we simply extracted the equation constants from the
Ma jumdar report, used the above relaxation curves from experimental tests,
and predicted the cyclic lives for those tesﬁs using the damage rate life
equations. Thus, our damage rate results Should be considered more

preliminary than the other predictions.

CONTINUOUS CYCLING FATIGUE

We calculated the continuous -cycling fétigue life, Nf, to be used in
the linear summation of damage calculations from a previous analysis.l4
Briefly, that analysis separately relates plastic and elastic strain

ranges to average cyclic life with the following equations:

Low Cycle
re, = 0.7363}0'0959 , (13)
(<427°C)
- -0.720
AEP = 252.9Nf s (14)
-0.9
Me, = 0.606870" 07 (15)
(538-593°C)
-0,720
Aep = l76.5§f ; (16)
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High Cycle
deg = 0.340870"0%87 (17)
(<427°C)
_ -0.370
hep = 11.620p , (18)
A, = 0.298N}0‘0287 , (19)
(538-593°C)
_ _01370
dep = 9.71Np . (20)

In addition variable values of the coefficients in the above equations were
calculated to allow a description of differences in behavior resulting
from heat-to-heat or heat treatment effects on properties. Thus, in pre-
diction of long-term behavior, the average equations above were used to
estimate Nf' However, in the analysis of experimental data, Mf was esti-
mated with the equations for the particular heat and heat treatment of

CONCern.

CREEP-RUPTURE BEHAVIOR

Annealed 2 1/4 Cr-1 Mo steel can display significant differences in
creep—rupture strength resulting from heat treatment and other effects.

The rupture life, #, (h), can be described by

23349 5693.8
T T

log t, = -13.528 + 6.5190/7 + log 0 , (21)
where all logarithms are base 10. Equation (1) was determined from a
linear least squares fit to 121 data, yielding a coefficient of deter—‘
mination, Rz, of 80.0% and a standard error of estimate, SEE, of 0.32.

The stress, ¢, is in MPa, and the temperature, 7, is in K. The value in
MPa of the ultimate tensile strength at the temperature of interest
obtained at a strain rate of 6.7 x 10“4/3l is U. The terms involving
ultimate tensile strength allow the equation to reflect the above men-

tioned variations in strength level., Ideally, the value of U corresponds
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to the particular heat and heat treatment of material under consideration.
However, it may be appropriate to use an average value of U for material
with the particular melting practice and heat treatment under con-

sideration. Results are analytically valid under the following conditions:

Stress = 0 < IG[ < ultimate tensile strength,
Temperature = 427°C (800°F) < T < 593°C (1100°F).

The above equation was developed from data for air-melted, vacuum-arc
remelted (VAR), and electroslag remelted (ESR) plate material. Heat
treatments included both annealing and isothermal annealing with and
without a subsequent 4-h postweld heat treatment at 727°C (1340°F). The
predictions from the equation are quite consistent with the minimum stress
to rupture values given for 2 1/4 Cr-1 Mo steel in Code Case N-47, as

shown in Table 1.

Table 1, Comparison of Current Predictions with ASME
Code Case N-47

Temperature giﬁi??ze Stress, MPa, for a Rupture Life, h, ofd

_ Strength®

°c (°F) (MPa) 10l 103 105

454 (850) 450 4500 (—)d 320(--)d 178(185)
345 345¢(358) 243(241) 135(145)

510 (950) 415 . 378(—)d 201(195) . 107(108)

_ 110 287(276) 152(153) 81(87)

566  (1050) 345 226(228) 115(122) 58(61)

240 172(179) 87(96) 44(48)

@The two values of ultimate temsile stremgth for each temperature
represent approximate average and minimum values for annealed material

(postweld heat-treated material can approach this minimum strength).

bNonparenthesized values are from current predictions. Minimum
values in parentheses are from ASME Code Case N~47. Average values in
parentheses are from G. V. Smith, Supplemental Report on the Elevated-
Temperqture Properties of Chromium-Molybdenum Steels (4n Evaluation of
2 1/4 Cr-1 Mo Steel), ASTM DS 652, American Society for Testing and
‘Materials, Philadelphia, Pa., 1971. Smith's work formed the basis of the
values in Code Case N-47,

cEquation predicts values greater than ultimate tensile strength.
Value has been set as ultimate tensile strength.

dConditions outside the range of predictions given in DS 652.
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For estimation of long-term behavior by linear damage summation,
average values of ultimate tensile strength for annealed air-melted
2 1/4 Cr-1 Mo steell® yere used in Eq. (21). 1In the analysis of experi-
mental data, estimated tensile strength va}ues for the particular heat and
heat treatment were used to estimate rupture lives for use in the creep
damage calculations.

s

DAMAGE SUMMATION

We calculated the linear summation of damage for available experimen-
tal data using the above continuous cycling fatigue and creep-rupture
relationships. Note that both these relationships are different from

3

those used previcusly” in such calculations.

After the creep damage per cycle, D,(l), is calculated by Eq. (4) and

Nf is estimated by Egs. (13 through 20). The predicted cyclic life for a

given test is then given by

D

o = Ti7Wp + 0,07

(22)

The wvalue of D is often assumed to be l. For the current data this
assumption appeared reasonably good for tests involving tensile hold
periods. However, for compressive hold periods (which are moré damaging
.for this material at low strain ranges) a value of D less than 1 must be
assumed to avold overoptimistic predictions. As shown in Fig. 8, the
bilinear "damage diagram” proposed in an earlier report3 still provides a
good description of the available data. Therefore, this same diagram is

again proposed for use here.

PREDICTION OF LONG-TERM DATA

Table 2 shows the relatively long~term creep-fatigue data for 2 1/4 Cr-
1 Mo steel generated in the ORNL testing programs from 1977 through mid
1979, Also shown are predicted lives for those tests by strain range
partitioning, linear summation of damage (using D = 1 and using the damage

diagram), and damage rates. In generallthe damage diagram results agree
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better with the experimental compressive and compressive and tensile hold
data than do the D = 1 results (as expected). Also, the SRP results
generally describe the data better than do the linear damage results. -The
damage rate predictions tend to be very over conservative for the lowest
strain range tests, probably as a result of the preliminary constants used

in making those predictions. 1In particular, leog Aep is assumed to be

linearly related to log Nf at all strain levels, contrary to previous
results.l4 Note that all hold periods involved relaxation at peak strain
rather than creep at peak stress. Still for specimen MIL-72 the combined
"ee¢" life relationship line of Eq. (9) describes the data better than the
"ee(r)" life relationship.

The low-straimrange tests in Table 2 generally tend to display
longer cyclic lives than would be predicted by any of the techniques used.
Moreover, the test on specimen BIL-35 indicates significant damaging
effects resulting from a hold period at essentially zero strain, which
none of the techniques predict.®* Clearly, the creep—fatigue behavior of
2 1/4 Cr=1 Mo steel is a complex process. Recent progress,17 has been
made toward development of detailed models for the process of time-
dependent fatigue in this material. Our own current conclusion is that
the process is stromgly related to envirommental effects. At any rate all
of the techniques used here represent somewhat oversimplified views of the
true material behavior, and one should keep this in mind in attempting to

assess uncertainties in the long-~term predictions.

PREDICTIONS OF LONG~-TERM BEHAVIOR

To predict behavior for hold periods and time durations longer than
those available experimentally, the linear -damage summation approach
requires that one be able to estimate long-term cyclic relaxation curves.
This was done by first estimating the peak stress for the hold period3 and

then estimating the actual relaxation curves from a creep equation.3s18s19

#Both the strain range partitioning and damage rate approach well
predict the life of this specimen, but only because they both under pre-
dict the continuous cycling life of this heat at these loading conditions.
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The above expressions for rupture life and continuous—cycling fatigue life
then allowed estimation of cyclic life under various hold-time conditions.
These predictions were then used to construct elastic analysis curves.

The peak stresses and total amount of predicted relaxation can also be
used to estimate strain range components for use in long-term projections

by strain range partitioning.

RELAXATION CURVES

The peak stresses used in estimating relaxation curves were the same
as those used previously. Relaxation curves were also predicted, as was
done previously. Details concerning calculation of Ehe relaxation curves
and estimation of creep and fatigue damage based on these curves are given

in a former report.3

LINEAR DAMAGE RESULTS

We projected long~term creep-fatigue using the linear damage approach
based on the above damage diagram for compressive holds and.on the assump-
tion that D = 1. Although we assumed that the peak stresss were comnstant
throughout the life and that no creep strain hardening was carried over
from one cycle to the next, the characteristics of the creep equation used
to estimate relaxation behavior dictated that, in general, two types of
relaxation curves were predicted within a given loading condition. For
the first ¥y cycles, all predicted relaxation curves were of the first
type; for the remaining Ny — N7 cycles (W, = predicted cycles to failure
with hold time) the predicted relaxation curves were of the second type as
a result of a metallurgical change in the material. Thus, the creep

damage,D, , is actually evaluated as:

L dt 2 4t
D, = le "%*‘“ + (Nh -"Nl)f t— 5 (23)
r r
or

= ' - \ 24
pe Nch(l)l + (Nh Nl)Dc(l)z . (24)
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As -a result Eq. (22) becomes

D — Wy [D,(1) = Da(1),)
Th T DDy F (T

(25)

For the predictions using the damage diagram, the value of D is calculated

by

) Ny [D,(1)) — De(1),)(1 + B) — A[Dg(1) Wy + 1]
B [B — Da(1)y * Nyl ’

D (26)

where 4 = 1/9 and B = —-1/9 or 4 = 1 and B = -9, depending on which leg of
the damage diagram the results fall on,

Typical projected results for given hold periods are shown in
Figs. 9 and 10, However, note that these figures represent projections of
aﬁerage behavior. To estimate design behavior safety factors must be
applied'to the results. These factors were applied by design values of
continuous cycling fatigue lifel%4 in the above equations and by
multiplying all creep damage quantities in the equations by 20; a factor
of 20 on life is typically sought in ASME calculations of the creep por-
tion of creep-fatigue damage.

Figures 11 and 12 illustrate typical predicted lives (with safety
factors). for given hold periods. These projections can then be trans-
formed into constant life design curves merely by taking appropriate time
cuts across the curves in these figures. If the total design life is £p,
then the number of cycles to failure for a hold time of #j; is approxi-
mately given by tD/ﬁh. Thus, for example, the allowable strain for a
104 cyele life in 104 h is the strain that would give a life of 104 h with
a l-h hold period in Figs. 11 and 12, By using this premise constant life
curves were graphically constructed from results such as those in these
two figures. Interpolation between the strain ranges shown was done on a
linear log-log basis.

Figures 13 and 14 show various constant life curves comstructed with
the above technique. These curves are essentially the elastic analysis

curves as currently defined by Code Case N~47. However, the Code method
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for estimating strain range uses an equivalent straiﬁ approach given by

Aeequiv = \Zg [(Aeyp — Aay)2‘+ (Asy —-Aa)2
(27)

3
+ (hey — hey)? + 5 (AY%y + Ayéz + M%;,c)]“2 .

This equation is strictly applicable only to the case of purely
plastic strain. TFor general cases the multiplier V273 should be replaced
by'vﬁ7T2(1 4 v)], where v is Poisson's ratio. For plasticity v = 0.5,
and the two approaches are identical. For purely elastic strain v is of
the order of 0.3, and the Code approach will underestimate the strain
range by about 15%, Therefore, to avoid errors in prediction of fatigue
damage, the curves in Figs. 13 and 14 were lowered by 15% in the high
cycle and at 100 cycles to failure where the deformation is essentially
elastic. (For short—time curves, the highest number of cycles shown was
used for this calculation.) If Ae® is the strain range at 106 cycles inm
Figs. 13 and l4, this strain range decrement is given by 0.15Ae*, The
remainder of the strain ranges was then decreased by this same amount,
yielding curves that are essentially identical to those in Figs. 13 and 14
on the low cycle and where the deformation is essentially plastic. The
final corrected design curves based on the damage diagram are given in
Figs. 15 and 16.

Several characteristics of the curves in Figs. 13 and 14 should be
noted. First, under most conditions the damage diagram differs little
from the D = 1 curves., This lack of difference occurs because, except for
shorter times and lower cyclic lives, the damage under the conditions
covered by these curves is essentially all from creep. Therefore, the
total amount of damage, I, approaches unity.

Also of note are the geometric configurations of the curves, par-—
ticularly the flatness in the high-cycle portions of many of the curves.
This flatness again occurs because the damage under these conditions is
essentially all from creep. The strain level simply becomes that which

corresponds to the stress to give rupture in a time of 20fp and is
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virtually independent of the number of cycles. Thus, the flatness directly
results from the use of the linear damage summation approach in

constructing the curves.

STRAIN RANGE PARTITIONING RESULTS

The long-term relaxation predictions were also used to estimate
strain range components for use in projection of long—term creep~fatigue
behavior by strain range partitioning, Note from Fig. 3 that “"ep" strain
is the most damaging at high strains, while “pe" strain is the most
damaging at low strains. For our long-term predictiomns, whichever of
these two was most damaging was used in each particular situation.

Figure 17 illustrates average long-term predictions from this method. The
predicted behavior was somewhat similar to that obtained by the linear
summation of damage approach, although the actual numbers change. In
general the SRP predictions tend to be more optimistic at high strains but
gradually approach the linear damage predictions at lower strains.

Since the SRP approach deals only with inelastic strains, uncertain-
ties would appear to be magnified under conditions of essentially elastic
behavior. To yield predictions under such conditions, we arbitrarily
imposed a minimum inelastic strain range of 0.001% on all conditions,
regardless of the actual predicted strains. This assumption could distort
the very high cycle behavior. However, since we are interested in |
constructing elastic analysis_curves to 106 cycles only, the assumption
should not greatly influence the results,

Another uncertainty arises in attempting to apply design safety fac-
tors to the SRP predictions. The factors used for the linear damage pre-
dictions were obtained as current Code practice. However, there is no such
practice for the SRP results. Therefore, since the SRP results are pre-
sented only for comparison, we chose to calculate average curves only and
did not attempt to apply design safety factors. '

In view of the comparisons with experimental data, the SRP approach
may very well be more realistic than the linear summation of damage
approach for this material. On the other hand, neither method directly

addresses the strong environmental effects on the creep-fatigue behavior
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of this material. Moreover, a significant amount of work needs to be done
before the true accuracy of the strain range partitioning approach for the
examination of the long-term creep—fatigue behavior of 2 1/4 Cr-1 Mo steel

can be determined.

DAMAGE RATE RESULTS

We projected no long—term behavior using the damage rate approach

because our work with this method is preliminary.

STATUS

The elastic curves constructed with the linear damage summation
damage diagram (Figs. 15 and 16) appear td be the optimum set of results
based on current ASME Code Case N-47 rules. However, note that the
hysteresis loop used in constructing these curves assumed zero mean
stress. Such an assumption is adequate for this applicatiom if creep (or
relaxation) can potentially occur at both ends of the loop. However, if
creep can occur at only one end of the loop (e.g., if the otherx end is at
a temperature below the creep range), a mean stress will develop in the
direction of the end with no creep. In this case the stresses during
relaxation or creep on the first end will be lower than those used in this
report, and Figs. 15 and 17 may be overconservative. To avoid this undue
conservatism the curves in Figs. 18 and 19, constructed by the Schultz
method documented in the Appendix, are recommended for use when creep can
occur at only one end of the cycle. (The 100~h curves were unchanged. )

The validation of alternative techniques for the prediction of long-
term creep—fatigue behavior should be vigorously pursued since the linear
damage approach appears to have significant potential shortcomings. Al so,
alternative methods for the presentation of the elastic analysis curves
should‘be studied.' The long-term comstant life curves are so dominated by
creep damage that they contain little information. Moreoﬁer, the curves
in Figs. 15 énd 16 (and the existing elastic analysis curves in Code Case
N-47 for other materials) are so conservative that they may be of little

general usefulness.20 Alternatives that could easily be pursued might
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include use of the constant hold-time plots (such as Fig. 1l1) or plots of
creep damage per cycle vs hold time for various strain ranges. The ASME

Working Group on Creep—Fatigue is currently pursuing such alternatives. ' g

CONCLUSIONS

. 1. Available creep—fatigue for 2 1/4 Cr-1 Mo steel can be reasonably
well describgd by the techniques of linear damage summation, strain range
partitioning, and damage rate analysis. However, all methods yleld large

uncertainties upon extrapolation to longer times and lower strain ranges.

None of the methods appear to reflect true trends in this reglen.

2. Available creep—fatigue data can be indirectly and artificially
extrapolated to long times with any of the above techniques in conjunction
with representétious of cyclic stress—strain and creep behavior.

3., Using the above extrapolations we constructed elastic analysis
creep—-fatigue curves for this material at the request of the ASME Working
Group on Creep Fatigue.

4. The resultant elastic analysis curves (and the curves for other
materials currently in Code Case N-47) appear to be so conservative that
they can very seldom be used. Alternative methods for the presentation of

creep~fatigue behavior for elastic analysis should be pursued.
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APPENDIX

Babcock and Wilcox letter documenting the procedure used to gemerate the
creep damage for the high-cycle end of the elastic design fatigue curves

for cycles with a hold period at only one extreme.
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Babcock & Wilcox

Research and Development Division

P.0. Box 835, Alliance, Ohio 44601
Telephone: {216) B21-9110

June 1, 1979

Mr. M. K. Booker

Oak Ridge Natjonal Lab.

P. 0. Box X

Oak Ridge, Tennessee 37830

Dear Keijth:

The purpose of this letter is to document the procedure used to generate
the creep damage for the high cycle end of the elastic design fatigue curves
for cycles with a hold-period at only one extreme.

The hysteresis loops shown in Figure 1 illustrate the behavior possible
at low strain ranges with a hold-period at only one extreme of the cycle. As
shown in that figure, the strain range of Ae is obtained by cycling between
strain limits of zero and teq Note that the hold-peried occurs at a fixed
strain of ey The broken Tine represents unloading frem the maximum strain
for which that unloading would remain elastic {i.e., a stress range of twice the
yield stress).  Note that the initial stress for any cycle is egual to the final
stress of the previous cycle until the stress relaxes to a value below that
represented by the point labeled "a" in Figure 1. That is, relaxation to
point a is monotonic and is seen to depend on the total elapsed time as opposed
to the specific duration of each individual hold-period. Subsequent to relaxing

to point a, all cycles will be identical such as illustrated by the path defined
by the points a, 9, 10, 11, etc.

In the above example, the creep damage can, for convenience, be considered
to be composed of two separate components. Specifically:

8 The creep damage incurred during monotonic relaxation from
point i to point a.

o The incremental creep damage incurred during each sub-

sequent cycle as a result of repetively relaxing from
point a to point 9.

The Babcock & Wilcox Company [ Established 1867
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A very convenient (and conservative) assumption is that the stresses
represented by points a and 9 are nearly identical such that this relaxation may
be ignored. In so doing, one may compietely ignore the hold-time duration and
be concerned with only the total design life. For example, assume that the
design Tife is DL hours and that it takes tf hours to relax from stress 81
(point T of Figure 1) to stress Sa {point a of Figure 1). The first component
of creep damage is then that incurred durjng monotonic relaxation from S} to Sa
during tf hours. The second component of creep damage is approximated as
(DL - tf) hours at a constant stress of S_; i.e., {L - tf)/TDa’ where Tp,
represents the time-to-rupture at a stress of Sa.

The above described procedure represents the basics of the method used
to generate the creep damages previously transmitted to you.

Other hysteresis loops could have been selected as the basis of the
method. For example, that shown in Figure 2. 1In that figure, the strain range
of Ae is obtained by cycling between xAe/2. It is again assumed that the hold-
period is introduced on the tensile extreme. The behavior is basically the same
as that shown in Figure 1. The creep damage is, however, less than that for
the situation of Figure 1. To illustrate this difference, points 1 and a of
Figure 1 are shown in Figure 2 as points 1' and a'.  The behavior of Figure 2
was discarded primarily because it is less conservative than the behavior of
Figure 1.

The situation shown in Figure 3 might also be considered as a possible
basis of generating the elastic design fatigue curves. In that figure, the
strain range of Ac is obtained by cycling between zero and teq. This situation
differs from that of Figure 1 in that the hold-period is introduced at zero
strain. 1t is seen that each cycle is identical to the previous cycle throughout
the 1ife. This is true irrespective of the strain range. Point a of Figure 1
is shown in Figure 3 as point a'. It was seen in Figure 1 that the stress at
the start of any hold-period, S, (Figure 1), is equal to or greater than the
stress of point a, Sa; i.e., ST
the stress at the start of each cycleisa constant, S, (Figure 3). It can be

{Figure 1} > Sa. For the situation of Figure 3,
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shown that

S, {Figure 1) = S (Figure 3) + aetP

where EP represents the sTope of the cyclic stress-strain curve beyond the yield

stress. It is then apparent that the conditions of Figure 1 are more damaging
than those of Figure 3 since: '

S, > S; (Figure 3)

Creep damages were generated for 800, 900 and 1000F for design lives of
102, 103, 104, 8x104, and 2.5xTO5 hours. A1l calculations requiring the use of
the average expected UTS were based on the following values:

800F 66.89 KSI

900F 62.70 KSI

1000F 55.02 KSI
A1l creep strain calculations were based on the NSMH creep equation using the
above aVerage UTS values. The average expected stress rupture behavior was
based on the proposed NSMH equation that you provided. That is,
log tr = -13.528 + 6.5196 U/T + 23349/7 - 5693.8 (log o)}/T

where
t = time to rupture (hours)
ultimate tensile strength (MPa) at temperature

- 3
n

= temperature (K}
o = stress (MPa)

The bilinear cyclic stress-strain curves used to define the initial stresses are
shown in Figures 4, &, and 6. These curves were canstructed on the basis of the
0.70 hour hold-time data provided by you. That data is represented by the open
symbols in those figures. Although not apparent, the open symbol data was
plotted on the basis of stress vs. strain range/2,

To fully document the details of the procedure an example is provided.
The example selected s a strain range of 1.8x}0"3 in/in at 800F. Beyond the
yield stress, the equation for the 1ine representing the bilinear cyclic stress-
strain curve is:
=5 (1- EE) + nekP
y E
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That equation provides the initial stress, Si’ of 32.45 KSI for the above con-

ditions. This corresponds to point ] of Figure 1. The critical relaxation,

stress, Sa’ {point a of Figure 1) is defined by:

(2
a ¥y E

For the above conditions, Sa = 21.62 KSI.

-1) + AcE

On the basis of uniaxial relaxation calculations, with an initial stress
of 32.45 KSI, it was found that the stress relaxes to 21.62 KSI in approximately
5000 hours with an accumulated creep damage of approximately 2.6x10"3. A factor
of safety of 20 on creep damage results is an estimated creep damage of 0.052.
As previous1y discussed, the creep damage is, for convenience, considered to
consist of two components. The damage of 0,052 represents'the damage incurred
during the monotonic relaxation that occurs during the first 5000 hours of the
design tife. Let this damage be represented as Dc]'

The second component of creep damage (represented as Dc2) is determined
by assuming that the remainder of the design life is spent at a stress of Sa;
i.e., 21.62 KSI. At a stress of 21,62 KSI, the average expected time to rupture
divided by the factor of safety of 20 is 140,400 hours.

For a design 1ife of 250,000 hours:

250,000 - 5,000 _
Dep = ~Ygo,qo0 - 1-7%0

and

D_.=D,+D_,=0.052+1.745 = 1.797

cT cl c2
indicating that the assumptions are too conservative for a design life of
250,000 hours. Specifically, a hold-period should be defined during which the
stress could repetively relax from Sa to some lower value after the initial
5,000 hours of the design 1ife.

For a design 1ife of 80,000 hours:

80,000 - 5,000 _

B2 Ta0.400 - 0-534

and

DCT = Dc¥ + SCZ = 0.052 +'0.534 = 0.586
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Using the bilinear damage interaction diagram {0.1, 0.1} the allowable fatigue
damage, Df, is 0.046.

For a design life of'10,000 hours:

. 10,000 - 5,000 _
Pc2 =~ ag,q00 - 0-0%

and
DCT = 0.052 + 0.036 = 0.088 .
The allowable fatigue damage, Df, is then 0.208.

For a design life of 1,000 hours the procedure is changed since monotonic
relaxation to Sa requires a time in excess of the design life. In this case,
DC1 is determined by allowing 1,000 hours of relaxation from an initial stress
of 32.45 KSI. MWith the factor of safety of 20, this damdge is determined to be
0.019. Note that Dc2 is zero, 50 that the total creep damage, DcT’ is 0.019.
The altowable fatigue damage, Df, is then 0.829.

. A1l of the previously transmitted results ére provided in Table 1. The
design aliowable number of cycles is obtained by multiplying the corresponding
allowable cycles from the continuous cycling design fatigue curve by Df as
provided in Table 1.

At higher strain ranges this method will provide results that are more’
conservative than those obtained using the standard method previously accepted
by the WGCF. This additional conservatism is due to the simplifying assumption
that relaxation does not progress below Sa. At those strain ranges for which
results are available for both methods, it is guite correct to accept the least
conservative solution. Similarly, at strain ranges for which solutions were
not obtained by either method, it is considered acceptable to interpolate or

fair-in the missing data.

As you recently pointed out, the present method can, in some cases,
result in predictions that are more conservative than the standard method even
at the lower strain ranges. This additional conservatism is the result of
assuming that the strain range Aec is obtained by cycling between zera and g as
opposed to cycling between #ae/2. As a result of this assumption, the initial
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stress is increased by a factor of at least 2. At the higher strain ranges, the
cycle definition (such as shown in Figures 1, 2, and 3) does not affect the
results; thus any choice is acceptable. However, as previously discussed, the
cycle defined in Figure 1 appears to be the most acceptable choice at the Tower
strain ranges. ' '

A final consideration worth mentioning is the use of the 0.1 hour hold-
time. data to generate the cyclic stress-strain curves. It is obvious that the
hold-time must increase as the allowable cycles decrease for a fixed design
life. For consistency, a multitude of cyclic stress-strain curves should have
been used. At this time, I don't think the additional effort is justified.

It is hoped that this exercise is of value in your effort to construct
the elastic design fatigue curves. Perhaps it will also serve to focus
attention on some of the short-comings of the basic concept pf elastic design
fatigue curves.

I do want to thank you for the considerable and prompt help that you
have provided. I look forward te seeing you in New York.

Yours truly,

THE BABCOCK & WILCOX COMPANY
Alliance Research Center

( C dekaltZ™

€. €. Schultz
Applied Mechanics

mad

Attachments

cc: R. D. Campbell
J. M. Duke
8. M. Hinton - NED
L. K. Severud
J. M. Tanzosh - NED
W, Veljovich
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"TABLE 1. ALLOWABLE FATIGUE DAMAGE FOR
VARIOUS DESIGN LIVES

800F
be 5 4 4 3 ?
{x103 in/in) 2.5x10° hrs 8x10" hrs 107 hrs 10° hrs 107 hrs
1.0 0.097 0.118 - 0.694 0.937 0.982
1.1 0.093 0.097 0.54] 0.803 0.973
1.2 0.09 0.095 0.442 0.874 0.964
1.3 0.090 0.094 0.415 0.874 0.964
1.4 0.089 0.094 0.388 0.865 0.955
1.5 0.088 . 0.093 0. 361 0.856 0.955
1.6 0.078 ¢.092 0.325 0.847 0.955
1.7 0.035 0.083 0.289 0.838 0.946
1.8 0.046 0.208 0,829 0.946
1.9 0.09N 0.793 0.946
2.0 0.065 0.604 0.937
2.1 0.0114 0.208 0.910
2.2 0.092 0.838
900F
be 5 4 4 3 2
(x103 in/in) 2,510 hrs 8x10" hrs 107 hrs 10" hrs 10" hrs
0.8 0.2563 0.262 0.316 0.748 0.946
0.9 0.0%9 0.099 0.099 0.595 0.910
1.0 0.096 0.097 0.098 (. 550 0.892
1.1 0.079 0.092 0.097 0.505 0.883
1.2 0.066 0.096 0.469 0.874
1.3 0.088 0.424 0.856
1.4 0.049 0.298 0.847
1.5 0.094 0.820
1.6 0.070 0.649
1.7 0.018 0.244
T1000F
he 5 4 4 3 2
(x103 in/in) 2.5%x107hrs 8x10" hrs 10" hrs . 107 hrs 107 hrs
0.6 0.721 0.748 6.775 0.802 0.901
0.7 0.595 0.622 0.658 0.694 0.829
0.8 0.460 0.487 0.532 0.577 0.739
0.9 0.316 0.343 0.388 0.442 0.631
1.0 0.094 0.100 0.262 0.325 0.523
1.1 - 0.060 0.097 0.298 0.496
1.2 (0,063 0.109 0.478
1.3 0.087 0.451
1.4 (0.038 0.226
1.5 0.089
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